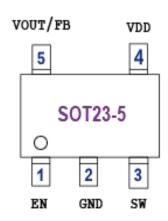


概述

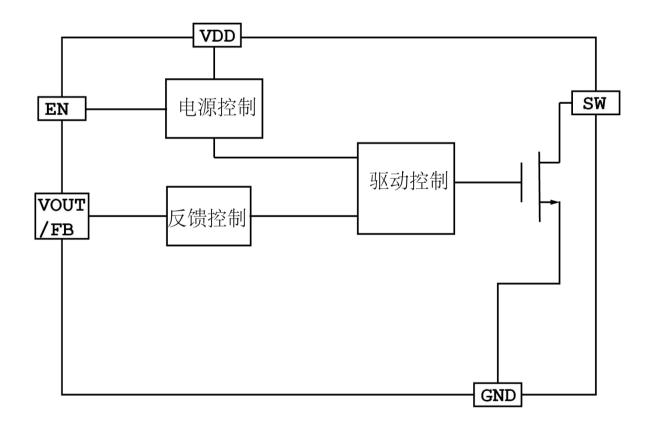
TX4103 是高效率同步整流 PWM 降压 DC-DC 转换器。输入电压范围从2.2-5.5V。适合于单节电池驱动的应用。100% 负载循环能力延长电池寿命,没有负载时的静止电流是 200uA,关闭时将降到 <1uA 以下。内部同步开关是为了提高效率而不需要外部的肖特基二极管。在1.5MHz 的开关频率允许使用微小的、低姿态的电感器和陶瓷电容,从而适用于小体积的解决方案。芯片采用SOT23-5封装。

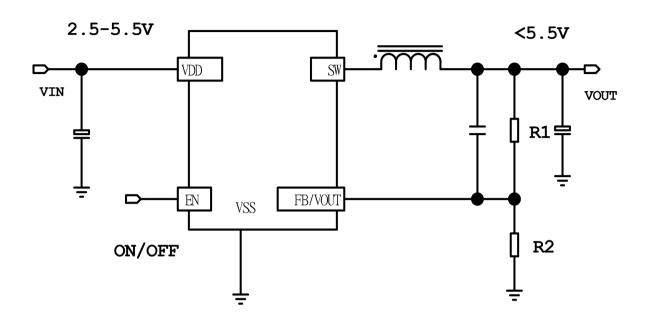

产品特点

- □ 输入电压: 2.2-5.5V
- □ 输出电压: 0.6-5.5V
- □ 输出电流: 1000mA
- □ 低静态电流: 300uA
- □ 效率: 高达95%
- □ 自动模式转换: PWM/PFM
- □ 工作频率: 1.5MHz
- □ 输出电压短路保护
- □ 关断静态电流:〈luA

应用领域

- 网络系统
- 医疗设备
- 工业设备
- 消费类电子产品
- 建筑、工业、环境照明
- 数码相机、MP3
- 掌上电脑、IPAD
- 无线电话、DSL宽带解调器
- 便携式媒体播放器


管脚定义

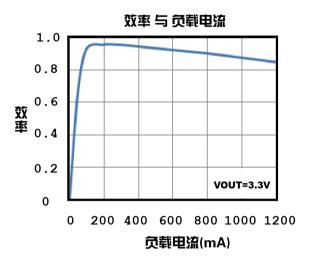

管脚功能描述

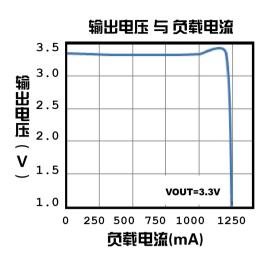
管脚号	字符	管脚描述
1	EN	使能端,高电平有效
2	GND	芯片地
3	SW	开关输出
4	VDD	芯片电源
5	VOUT/FB	反馈端

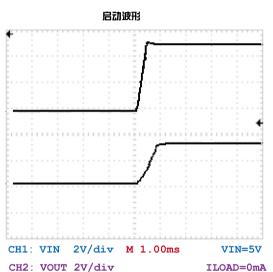
电路框图

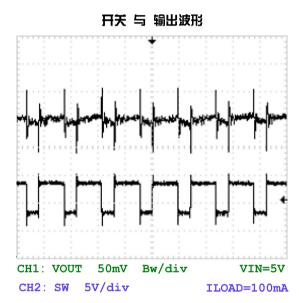
原理图

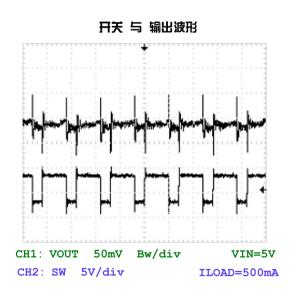
极限应用参数

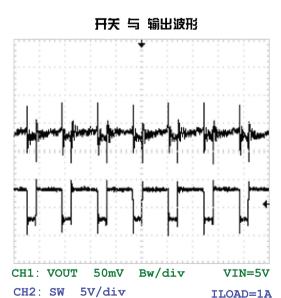

参数名称	标号	测试调件	MIN	TYP	MAX	Unit
电源电压	VDD		-0.3	-	6.0	V
输出电压	VOUT		-0.3	_	6.0	V
EN/SW脚电压	V_EN/SW		-0.3	VIN+0.3		V
SW脚电流	I_SW			2.2		А
工作温度	TA		-20	_	85	$^{\circ}$
结温度	ӨЈТ		-40		125	$^{\circ}$
存储温度	T_STG		-65	_	150	$^{\circ}$
焊接温度	T_SD	焊接,10秒左右	230	_	240	$^{\circ}$
静电耐压值	V_ESD	人体模型			2000	V


注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。


电气特性 测试条件:TA=25℃,V ℃ IN = 5.0V, VOUT =3.3V, R1=150k, R2=33k,除非另有说明


参数	标号	条件	最小值	典型值	最大值	单位
输入电压	VIN		2.5		5.5	V
输出电压精度 (固定输出电压)	ΔVOUT	I_OUT=100mA	-2		2	00
可调输出范围	ADJ_VOUT		0.6		5.5	V
反馈电压	V_FB	TA=25℃	0.588	0.6	0.612	V
反馈电压精度	ΔV_FB	VIN=2.5V-5.5V		0.03	0.4	%/V
反馈电流	I_FB				±30	nA
静态电流	I_DDQ	VFB=0.6V or VOUT=90%I_LAOD=0A		300		uA
关闭电流	I_SHTD	VEN=0V,VIN=5.0V,可 调输出电压		0.5	1	uA
振荡频率	Fosc			1.5		MHz
电感峰值电流	I_PK	VFB=0.6V or VOUT= 90%, ILOAD=0mA		1.8		А
场效应P管内阻	R_PFET	I_SW=100mA		0.3		Ω
场效应N管内阻	R_NFET	I_SW=100mA		0.39		Ω
输出电压线路调整	ΔV_LINE	VIN=4.2-5.5V		0.03	0.3	%/v
输出电压负载调整	ΔV_LOAD	OmA≤Iouт≤100mA		0.33		010
效率	EFFI	链接到外部组件时, VIN =VEN=5V, VOUT=3.3V, IOUT =100mA		90	95	0/0


典型性能特点



引脚功能介绍

EN 脚: 使能输入端。该引脚高于1.5v能够使器件工作。如果该引脚低于0.6v设备将关闭。在关闭功能下静态电流<1µA , EN脚不要悬空。

GND 脚: 芯片接地引脚。

SW 脚:外部连接到电感。引脚内部连接到主电源的漏极,即同步功率 MOSFET开关。

VDD 脚: 主电源引脚。电源脚外接10uF陶瓷电容到地。

VOUT / FB 脚: 反馈引脚。在不可调版本中,输出电压是固定的。在里面可调版本,FB引脚从外部电阻分压器接收反馈电压输出。输出电压由电阻分压器根据以下公式设置:

$$VOUT = 0.6V * \left(1 + \frac{R1}{R2}\right)$$

应用信息

基本应用电路如典型应用电路所示。 外部元件选择由最大负载电流决定,电感值和工作频率的选择然后是输入输出电容的选择。

电感的选择

对于大多数应用,电感值将在 1μ H至 4.7μ H的范围内。其值根据所需的纹波电流进行选择。大值电感器纹波电流较小,小值电感器会产生较高的纹波电流。较高的VIN或VOUT也会增加纹波电流,如等式所示。设定纹波电流的合理起点为: \triangle IL = 280 mA(40%为700 mA)。

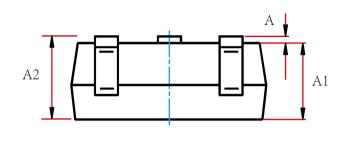
$$\Delta IL = \frac{1}{(f)(L)} VOUT \left(1 - \frac{VOUT}{VIN}\right)$$

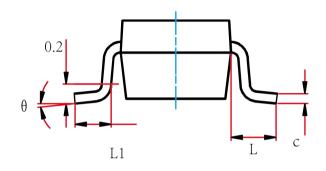
电感器的直流电流额定值应至少等于最大负载电流加纹波电流的一半,以防止磁芯饱和。 因此,对于大多数应用(700mA + 140mA),840mA的额定电感应该足够了。 为了提高效率,选择一个低直流电阻的电感器。不同的核心材料和形状将改变电感器的尺寸/电流和价格/电流关系。 铁氧体或透明合金材料中的环形或屏蔽壶形铁心体积小,不会产生太多的能量,但一般比具有类似电气特性的粉末铁心电感的成本更高。选择使用哪种形式的电感经常取决于价格vs 尺寸要求和任何辐射场/EMI要求。

输入和输出电容选择

在连续模式下,上拉MOSFET的源极电流与占空比为VOUT / VIN的方波。 为防止大电压瞬变,必须使用一个尺寸为最大RMS电流的低ESR输入电容。 最大RMS电容器电流由下式给出:

Cin Re quiredI_{RMS}
$$\cong I_{OMAX} \frac{[V_{OUT}(V_{IN} - V_{OUT})]^{1/2}}{V_{IN}}$$


该公式在VIN = 2V输出时的最大值,其中IRMS = IOUT / 2。在这种最坏情况下的设计,也不能起到很大的作用。电容器制造商的纹波电流额定值通常基于2000小时的使用寿命。 因此建议选择额定电压高于所使用电压的电容。选择输出电容是由所需的有效串联电阻(ESR)决定的。通常如果输出电容的ESR达到要求,RMS电流额定值通常远远超过IRIPPLE(PP)需求。 输出纹波 Δ VOUT由以下公式确定:


$$\Delta V_{OUT} \cong \Delta I_L \left(ESR + \frac{1}{8fC_{OUT}} \right)$$

其中f =工作频率,COUT =输出电容, Δ IL=电感中的纹波电流。 对于固定的输出电压,在最大输入电压下输入纹波最高,因为 Δ IL随着输入电压的增加而增加。铝电解电容和钽电容都可用于表面贴装配置。就钽电容而言,要对电容进行浪涌测试,以便用于开关电源设备。最好是选择AVX TPS系列表面贴装钽电容。

封装信息 SOT23-5

字符	公	制	英制			
	MIX	MAX	MIX	MAX		
D	2.820	3.020	0.111	0.119		
E	2.650	2.950	0.104	0.116		
E1	1.500	1.700	0.059	0.067		
е	0.950	TYP	0.037 TYP			
a	1.800	2.000	0.071	0.079		
	•					
A	0.000	0.100	0.000	0.004		
A1	1.050	1.150	0.041	0.045		
A2	1.050	1.250	0.041	0.049		
L	0.700 REF		0.028 REF			
L1	0.300	0.600	0.012	0.024		
С	0.100	0.200	0.004	0.008		
θ	0°	8°	0 °	8°		