

概述

TX4132L是一款支持宽电压输入的开关降压型DC-DC, 芯片内置60V/5A功率MOS, 支持最高输入电压55V。

TX4132L具有低待机功耗、高效率、低纹波、优异的母线电压调整率和负载调整率 等特性。支持大电流输出,输出电流可达3A以上。

TX4132L同时支持输出恒压和输出恒流功能。

TX4132L采用固定频率的PWM控制方式,典型开关频率为140KHz。轻载时会自动降低开关频率以获得高转换效率。

TX4132L内部集成软启动以及过温保护电路,输出短路保护,限流保护等功能,提高系统可靠性。

TX4132L采用ESOP8封装,散热片内置接VIN脚。

产品特点

☑宽输入电压范围: 8V~55V

☑输出电压从5V到30V可调

☑支持输出恒压恒流

☑支持输出5V/3A

☑内置软启动

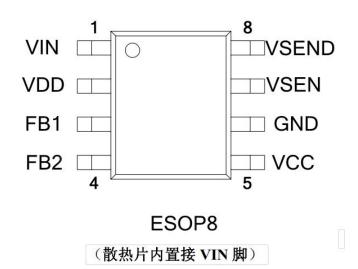
☑高效率:可高达96%

☑工作频率: 140KHz

☑低待机功耗

☑内置过温保护

☑内置输出短路保护

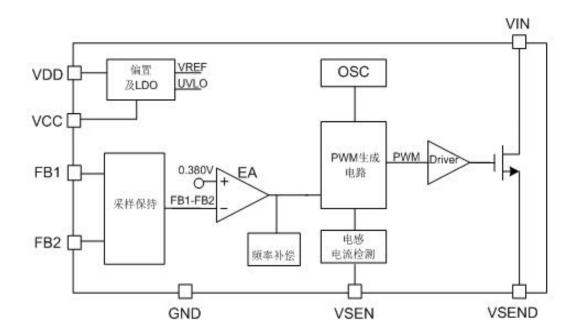

应用领域

☑恒压电源

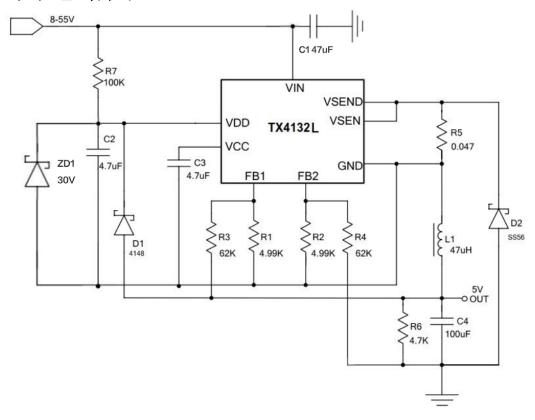
☑电动汽车、电动自行车、电瓶车

☑扭扭车、卡车

管脚定义



TX4132L V1.0


功能说明

管脚	名称	管脚描述		
1	VIN	内置 MOS 漏极,接输入电源		
2	VDD	芯片电源		
3	FB1	输出反馈电压正端采样		
4	FB2	输出反馈电压负端采样		
5	VCC	内部5V LDO输出,接电容。		
6	GND	芯片地		
7	VSEN	电感电流检测脚		
8	VSEND	MOS管源极		
9	散热片	内置接 VI N脚, MOS漏极		

电路框图

典型应用电路图

极限参数(注1)

符号	描述参数范围		单位
VIN	VIN 端最大电压	60	V
VDD	VDD 端最大电压	33	V
Vmax	FB1, FB2, VCC, VSEN, VSEND	−0. 3 ~ 6	V
	脚电压		
PESOP8	ESOP8 封装最大功耗	1	W
Т А	工作温度范	-40 ~ 85	${\mathbb C}$
TSTG	存储温度范围	-40~120	${\mathbb C}$
TOD	焊接温度范围	240+	${\mathbb C}$
TSD	(时间小于30秒)		
VESD	VESD 静电耐压值(人体模型) 2000		V

注 1: 极限参数是指超过上表中规定的工作范围可能会导致器件损坏。而工作在以上极限条件下可能会影响器件的可靠性。

电气特性 (除非特别说明, VDD =12V, TA =25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压		,	·	<u>'</u>	•	•
VDD钳位电压	VDD	IVDDv10mA		33		V
欠压保护开启	VDD_ON	VDD上升		4.5		V
欠压保护关闭	VDD_0FF	VDD下降		3		V
电源电流					•	
工作电流	IOP	DRV负载1nF电容		1		mA
启动电流	STARTUP	VDD=5V		40	100	uA
功率管电流限流					•	
过流保护阈值	VCS_LMT			300		mV
输出电流与输出电	压采样					
VSEN电压降	VCS		145	150	155	mV
FBI, FB2电压差	VFB		369	380	391	mV
开关频率						
开关频率	FS			140		KHz
内置MOS						
MOS管耐压	VDS		60			V
MOS管导通内阻	RDSON			70		mQ
过温保护						
过温保护	OTP_TH			150		°C
过温保护迟滞	OTP_HYS			25		°C
LD0						
VCC电压	VCC			5.5		V
	•	•	•	•	•	

典型应用测试数据

V0=5V/3A测试数据

			1 1	
VI	II (A)	VO	10	eff.
10	0. 277	5. 28		95. 3
12	0.233	5.27		94. 2
18	0.159	5. 27		92.1
24	0.12	5. 26	0.5	91. 3
36	0.081	5. 24		89.8
48	0.062	5. 23		87.9
55	0.054	5. 22		87.9
VI	II(A)	VO	10	eff.
10	0.56	5. 27		94. 1
12	0. 475	5. 27		92.5
18	0.318	5. 25		91.7
24	0.24	5. 25	1	91.1
36	0.161	5. 23		90.2
48	0. 121	5. 21		89.7
55	0.106	5. 21		89.4
VI	II(A)	VO	10	eff.
10	1.16	5. 29		91. 2
12	0.98	5. 28		89.8
18	0.65	5. 26		89.9
24	0.49	5. 26	2	89. 5
36	0. 327	5.23		88.9
48	0. 245	5. 22		88.8
55	0. 214	5.20		88.4
VI	II (A)	VO	10	eff.
10	1.82	5.30		87.4
12	1.51	5. 29		87.6
18	1	5. 28		88. 0
24	0.75	5. 28	3	88.0
36	0.5	5. 25		87.5
48	0. 373	5. 23		87.6
55	0. 326	5. 22		87.3

应用信息

概述

TX4132L是一款兼容宽输入电压范围的开关降压型DC-DC。芯片内置60V/5A功率MOS。

TX4132L采用固定频率的PWM峰值电流模控制方式,具有低待机功耗、快的响应速度,以及优异的母线电压与负载调整率。典型开关频率为 140KHz。 轻载时会自动降低开关频率以获得高的转换效率。

TX4132L同时支持输出恒压与输出恒流。

TX4132L内部集成软启动以及过温保护电路,输出短路保护,限流保护等功能,提高系统可靠性。

最大输出电流设置

最大输出电流通过连接于VSEN与GND之间的电阻设置(参见图 1 应用电路图):

$$IOUT_{-}MAX = \frac{VCS}{R5}$$

VCS 典型值为 150mV。例如 R5=47m0hm 则输出限流为 3.19A。

输出电压设置

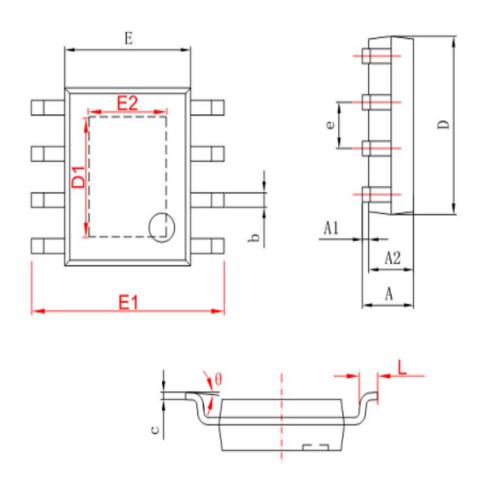
通过连接于FB1, FB2 脚的分压电阻R1, R3, R2, R4 设置输出电压。电阻选择应满足R1=R2, R3=R4。

$$VOUT = \frac{R2 + R3}{R1} * VFB$$

其中 VFB 典型值为 380mV 。

电感取值

电感典型取值在 33uH 到 100uH 之间,大的电感值可获得小的纹波电流有助于提高效率。另一方面需注意电感的 ESR, ESR 过大会降低效率。


过温保护

芯片内部集成过温保护,当芯片温度高过温保护点(典型值为 150 度)时,系统会关断功率管,从而限制输入功率,增强系统可靠性。

封装信息

ESOP-8L

SOP-8/PP

字符	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0.050	0. 150	0.004	0.010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0. 510	0. 013	0. 020
С	0. 170	0. 250	0.006	0.010
D	4. 700	5. 100	0. 185	0. 200
D1	3. 202	3. 402	0. 126	0. 134
E	3.800	4. 000	0.150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
E2	2. 313	2. 513	0.091	0.099
е	1. 270 (BSC)		0.050(BSC)	
L	0. 400	1. 270	0.016	0.050
θ	0°	8°	0°	8°

声明

芯鼎盛技术有限公司保留电路及规格书的更改权,以便为客户提供更优 秀的产品,规格若有更改,恕不另行通知。

芯鼎盛技术有限公司一直致力于提高产品质量和可靠性,然而任何半导体产品在特定条件下都有一定的失效和故障的可能,客户有责任在使用芯鼎盛产品进行产品研发时,应严格按照产品规格书的要求使用芯鼎盛产品,在进行系统设计和和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险造成人身伤害或财产损失等情况。如因客户不当使用芯鼎盛产品而造成的人身伤害或财产损失等情况,芯鼎盛公司不承担任何责任。